Estudo da aplicação de aeroelastic tailoring para controle passivo do ângulo de passo de pás de geradores eólicos
The generation of wind energy is expanding worldwide by emitting less pollutants than traditional power sources and mainly for being renewable. Large generators with active pitch control can rotate their blades, modifying the pitch angle according to the wind speed. This allows the generator to oper...
Principais autores: | Borges, Bruna Kolczycki, Fofano, Luiz Guilherme Seleme |
---|---|
Formato: | Trabalho de Conclusão de Curso (Graduação) |
Idioma: | Português |
Publicado em: |
Universidade Tecnológica Federal do Paraná
2020
|
Assuntos: | |
Acesso em linha: |
http://repositorio.utfpr.edu.br/jspui/handle/1/10497 |
Tags: |
Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
|
Resumo: |
The generation of wind energy is expanding worldwide by emitting less pollutants than traditional power sources and mainly for being renewable. Large generators with active pitch control can rotate their blades, modifying the pitch angle according to the wind speed. This allows the generator to operate close to its nominal power for wider velocity ranges, optimizing its energetic efficiency. However, for small generators the cost of such active pitch control system would penalize its utilization. Therefore, this research intends to investigate if the use of laminate composite materials is viable in providing a passive pitch control system. The flexibility matrices of the laminates were analyzed for different sheet orientations (aeroelastic tailoring) in a program coded in MATLAB, in order to obtain the best behavior in terms of twist and bending. These results were then validated through simulation of the wind turbine blade under a simplified load in the software HyperWorks. The twist angles magnitude obtained in this research is satisfactory for considering viable the application of aeroelastic tailoring for the pitch control of micro and mini generators, now remaining the study of the relation between pitch angle and energetic efficiency, in other words, the fit of correct angles for certain specific operational conditions. These results are expected to be able to provide better outputs in terms of efficiency and versatility for these generators, contributing for its diffusion as an autonomous source of power generation in small properties and regions isolated from electrical supply in Brazil. |
---|