Projeto executivo de um circuito experimental para operar com gases de alto peso molecular

Gas-liquid two-phase flow occurs in various industrial applications and the oil industry is one of them. Various models were and still being developed along the last few decades in order to predict the flow patterns in pipelines, the pressure drop and the heat and mass transfer coefficients. However...

ver descrição completa

Autor principal: Gmyterco, Alexandre Cunningham
Formato: Trabalho de Conclusão de Curso (Graduação)
Idioma: Português
Publicado em: Universidade Tecnológica Federal do Paraná 2020
Assuntos:
Acesso em linha: http://repositorio.utfpr.edu.br/jspui/handle/1/10592
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Resumo: Gas-liquid two-phase flow occurs in various industrial applications and the oil industry is one of them. Various models were and still being developed along the last few decades in order to predict the flow patterns in pipelines, the pressure drop and the heat and mass transfer coefficients. However there are just a few cases which were tested and validated to high pressure flow, which is a typical application in the oil extraction in offshore production. In this work, the design of an experimental loop to operate with high-density gas is presented, which will emulate the high-pressure flow in oil and gas fields using a pair of model fluids (liquid and gas). The experimental loop was designed to work in pressures up to 35 bar using a high-density gas known as sulfur hexafluoride (SF6) while the liquid phase will be mineral. Its design was separated into three sections: one is the test section for the two-phase flow analysis, another where only gas will flow and will undergo through a compression process and the last one where only mineral oil will flow through a pump. Both machines will increase the flow pressure supplying enough pressure due to two-phase flow pressure drop, gas and oil pipeline pressure drop and any other equipment. It was developed the pressure and temperature-monitoring system, diagrams for the assembly, a list containing all the recommended accessories for this experimental loop and the blueprints of the engine room is also presented. The experimental loop developed in this work intends to study and investigate the two-phase flow behavior at highpressures in future studies.