Estudo de caso: simulação computacional de desempenho energético do edifício da empresa MGD Eficiência Energética

Energy demand worldwide presents an accelerated growth trend for the future due to rising population numbers and per capita consumption. A large share of this demand is used in building on commercial, residential and industrial sectors, where opportunities for improvement are widely available. The f...

ver descrição completa

Autor principal: Andrade, Flávia de
Formato: Trabalho de Conclusão de Curso (Graduação)
Idioma: Português
Publicado em: Universidade Tecnológica Federal do Paraná 2020
Assuntos:
Acesso em linha: http://repositorio.utfpr.edu.br/jspui/handle/1/16209
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Resumo: Energy demand worldwide presents an accelerated growth trend for the future due to rising population numbers and per capita consumption. A large share of this demand is used in building on commercial, residential and industrial sectors, where opportunities for improvement are widely available. The field that studies these improvements, aiming to reduce energy consumption while maintaining performance and comfort inside buildings, is called energy efficiency. This paper intends to study the application of energy consumption and thermal performance simulation software in buildings, using the open-source platform EnergyPlus for a case study on a commercial building located in São Paulo, Brazil. The geometrical modeling of the building envelope was developed with the aid of secondary software, and was then used in EnergyPlus with additional data to evaluate thermal comfort and electric energy consumption, divided in three systems: air conditioning, lighting and other electrical devices. A first stimulation was developed to represent the current state of the building with the objective to diagnose opportunities for energy saving, and then a second simulation was completed with the implementation of proposed energy efficiency measures. Results of the current situation of the building have shown that thermal loads were poorly managed, with some building zones reaching up to 35 ºC during the summer and 11 ºC during winter, and this was mainly due to the thermal load from windows, that represented about 50% of total thermal load of the building. Based on this scenario the following measures were proposed: using shading structures on windows (brise-soleil), reducing the total area of glass and changing the type of glass used, changing the color of the roof for a light color, adding a plaster layer on walls and applying lighting systems controls. This way, the thermal load of windows was reduced to 28% of the total load of the building, and interior zones have experienced a drop of 2,4ºC in the average temperature during the summer and rise of 1,7 ºC during the winter. Total energy consumption was reduced in 23%, from 18,5 MWh to 14,6 MWh yearly, associated with a lower energy demand from HVAC systems, after thermal comfort was adequate, and from lighting systems. It's possible to conclude that the use of simple energy efficiency measures and effective application of thermal energetic simulation software results in relevant savings on electric energy consumption by buildings, introducing benefits to society and the environment.