Análise de algoritmos genéticos e evolução diferencial para otimização de funções não-lineares multimodais

Our society has been looking to solve more complex problems every day, with this context in mind, traditional solving methods can, many times, fall short on generating answers with the required speed or quality . For this reason, we studied, on this paper, Genetic Algorithms and Differential Evoluti...

ver descrição completa

Autor principal: Itaborahy Filho, Marco Antonio
Formato: Trabalho de Conclusão de Curso (Graduação)
Idioma: Português
Publicado em: Universidade Tecnológica Federal do Paraná 2020
Assuntos:
Acesso em linha: http://repositorio.utfpr.edu.br/jspui/handle/1/16249
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Resumo: Our society has been looking to solve more complex problems every day, with this context in mind, traditional solving methods can, many times, fall short on generating answers with the required speed or quality . For this reason, we studied, on this paper, Genetic Algorithms and Differential Evolution algorithms, both are classified as Evolutionary Algorithms, optimization methods based on the evolution of the species by Natural Selection. Were described 23 different Evolutionary Algorithms strategies and tested them using three different Benchmark functions, the answers were them studied and compared, by their speed of convergence and the quality of their outputs. There were found methods that, not only are an improvement over traditional optimization methods, but also over Evolutionary Algorithms that are currently more known and used.