Algoritmos de inteligência de enxame para otimização binária
This paper brings together a variety of bio-inspired algorithms specialized in solving binary optimization problems. The focus is on swarm intelligence algorithms, such as Particle Swarm Optimization (PSO) and Fish School Search (FSS), with the aim of determining the advantages of each one, comparin...
Autor principal: | Biuk, Lucas Henrique |
---|---|
Formato: | Trabalho de Conclusão de Curso (Graduação) |
Idioma: | Português |
Publicado em: |
Universidade Tecnológica Federal do Paraná
2020
|
Assuntos: | |
Acesso em linha: |
http://repositorio.utfpr.edu.br/jspui/handle/1/16251 |
Tags: |
Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
|
id |
riut-1-16251 |
---|---|
recordtype |
dspace |
spelling |
riut-1-162512020-11-19T19:44:48Z Algoritmos de inteligência de enxame para otimização binária Swarm intelligence algorithms for binary optmization Biuk, Lucas Henrique Siqueira, Hugo Valadares Siqueira, Hugo Valadares Kaster, Maurício dos Santos Bacalhau, Eduardo Tadeu Inteligência computacional Inteligência coletiva Otimização matemática Computational intelligence Swarm intelligence Mathematical optimization CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA This paper brings together a variety of bio-inspired algorithms specialized in solving binary optimization problems. The focus is on swarm intelligence algorithms, such as Particle Swarm Optimization (PSO) and Fish School Search (FSS), with the aim of determining the advantages of each one, comparing their performance for binary tasks. To this end, they are implemented in MATLAB [marca registrada] software, in order to facilitate the statistical analysis of the results obtained by simulating problems with various dimensions, such as One Max Problem and Knapsack Problem. The computational results, partially compared with evolutionary computation techniques, reveal that the PSO is able to reach the best overall performances, followed by the improved version of the binary FSS. Este trabalho reúne uma diversidade de algoritmos bio-inspirados especializados em resolver problemas de otimização binária. O enfoque é dado aos algoritmos de inteligência de enxame, como a Otimização pro Enxame de Partículas (PSO) e a Busca por Cardume de Peixes (FSS), com o objetivo determinar quais as vantagens de cada um, comparando-os em desempenho quando aplicados para solução de problemas de natureza binária. Para tanto, estes são implementados no software MATLAB [marca registrada], com intuito de facilitar a análise estatística dos dados obtidos através da simulação dos problemas com diversas dimensões, como o One Max Problem e o Knapsack Problem. Os resultados computacionais, parcialmente comparados com técnicas de computação evolutiva, revelam que o PSO é capaz de chegar aos melhores desempenhos gerais, seguidos da versão melhorada do FSS binário. 2020-11-19T19:44:48Z 2020-11-19T19:44:48Z 2019-12-06 bachelorThesis BIUK, Lucas Henrique. Algoritmos de inteligência de enxame para otimização binária. 2019. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Elétrica) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2019. http://repositorio.utfpr.edu.br/jspui/handle/1/16251 por openAccess application/pdf Universidade Tecnológica Federal do Paraná Ponta Grossa Brasil Departamento Acadêmico de Eletrônica Engenharia Elétrica UTFPR |
institution |
Universidade Tecnológica Federal do Paraná |
collection |
RIUT |
language |
Português |
topic |
Inteligência computacional Inteligência coletiva Otimização matemática Computational intelligence Swarm intelligence Mathematical optimization CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
spellingShingle |
Inteligência computacional Inteligência coletiva Otimização matemática Computational intelligence Swarm intelligence Mathematical optimization CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA Biuk, Lucas Henrique Algoritmos de inteligência de enxame para otimização binária |
description |
This paper brings together a variety of bio-inspired algorithms specialized in solving binary optimization problems. The focus is on swarm intelligence algorithms, such as Particle Swarm Optimization (PSO) and Fish School Search (FSS), with the aim of determining the advantages of each one, comparing their performance for binary tasks. To this end, they are implemented in MATLAB [marca registrada] software, in order to facilitate the statistical analysis of the results obtained by simulating problems with various dimensions, such as One Max Problem and Knapsack Problem. The computational results, partially compared with evolutionary computation techniques, reveal that the PSO is able to reach the best overall performances, followed by the improved version of the binary FSS. |
format |
Trabalho de Conclusão de Curso (Graduação) |
author |
Biuk, Lucas Henrique |
author_sort |
Biuk, Lucas Henrique |
title |
Algoritmos de inteligência de enxame para otimização binária |
title_short |
Algoritmos de inteligência de enxame para otimização binária |
title_full |
Algoritmos de inteligência de enxame para otimização binária |
title_fullStr |
Algoritmos de inteligência de enxame para otimização binária |
title_full_unstemmed |
Algoritmos de inteligência de enxame para otimização binária |
title_sort |
algoritmos de inteligência de enxame para otimização binária |
publisher |
Universidade Tecnológica Federal do Paraná |
publishDate |
2020 |
citation |
BIUK, Lucas Henrique. Algoritmos de inteligência de enxame para otimização binária. 2019. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Elétrica) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2019. |
url |
http://repositorio.utfpr.edu.br/jspui/handle/1/16251 |
_version_ |
1805323930924220416 |
score |
10,814766 |