Desenvolvimento de uma metodologia de análise de uma planta de cogeração de pequena escala com sistema de refrigeração por absorção

The energy efficiency of thermal systems has been a major topic of discussion on the preservation of natural resources and reducing costs of processes involved in these systems. Within the context of environmental preservation, cogeneration systems emerge as an alternative technology for power gener...

ver descrição completa

Autor principal: Silva, Karen Aldicléia da
Formato: Trabalho de Conclusão de Curso (Graduação)
Idioma: Português
Publicado em: Universidade Tecnológica Federal do Paraná 2020
Assuntos:
Acesso em linha: http://repositorio.utfpr.edu.br/jspui/handle/1/16283
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Resumo: The energy efficiency of thermal systems has been a major topic of discussion on the preservation of natural resources and reducing costs of processes involved in these systems. Within the context of environmental preservation, cogeneration systems emerge as an alternative technology for power generation would be the cogeneration systems, which provide satisfactory performance due to better using of the energy fuel potential. These systems has won your place not only in academic research, but also in industries and even in urban areas. In order to assist in engineering learning regarding this topic was developed of a methodology for thermodynamic analysis of cogeneration systems during graduation in engineering. The cogeneration plant was analyzed in order to evaluate its performance and the feasibility of its implementation using as fuels natural gas. The cogeneration system under study, which can be used in various industrial and commercial applications, comprises: a Internal combustion engine, an intermediate heat exchanger (which recovers energy from the exhaust gases from the fuel combustion) and a single effect ammonia-water absorption refrigeration system. These devices were analyzed using the thermodynamics laws. The equations system resulting from the thermodynamic model was solved using the computational platform ESS (Engineering Equation Solver). The results showed that with cogeneration system achieved a 11% increase in the energy utilization as compared with combustion engine operating alone. Furthermore it was possible to say that the fuel (natural gas) met the energy requirements to power the steam generator of the absorption system (ammonia-water single effect). The methodology presented is didactic and may also assist with the use other fuels.