Desenvolvimento de um sistema de monitoramento de sinais de ECG e temperatura utilizando dispositivos móveis

This work aims to develop a system for monitoring ECG and temperature signals with the purpose of giving mobility to people requiring continuous monitoring of some physiological signals, such as the elderly and/or individuals with heart failure or even for athletes who wish to improve their performa...

ver descrição completa

Autor principal: Moribe, Sergio
Formato: Dissertação
Idioma: Português
Publicado em: Universidade Tecnológica Federal do Paraná 2017
Assuntos:
Acesso em linha: http://repositorio.utfpr.edu.br/jspui/handle/1/1939
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Resumo: This work aims to develop a system for monitoring ECG and temperature signals with the purpose of giving mobility to people requiring continuous monitoring of some physiological signals, such as the elderly and/or individuals with heart failure or even for athletes who wish to improve their performance by monitoring their fitness. Research of similar equipment that there are currently on the market and that are being developed was made for a technical base of the prototype to be developed. The system was developed using a low cost and low consumption microcontroller for the acquisition of physiological signals and a Bluetooth module for communication with a mobile device having large capacity and processing resources to perform data storage and interface with a monitoring system for remote medical evaluation, ensuring mobility, safety and improved quality of life of elderly and patients. The main physiological signals are vital signals, which are the most basic body functions such as body temperature, heart rate, respiratory rate and blood pressure. In the proposed prototype, monitoring body temperature and complete 12-lead electrocardiogram (ECG) was incorporated. The respiratory rate and blood pressure were not included in the prototype due to the complexity of implementation of many physiological signals in a single equipment. For the hardware definition and to minimize the risk of future problems, tests have also been done with development tools available from manufacturers of the main components and which are also presented in this work. It is possible to conclude that the initials objectives were achieved bacause a prototype was developed for remote monitoring of ECG and temperature signals using an Android application. The prototype was tested using an ECG simulator and a temperature sensor, attending the main required features for the system.