Modelagem de um sistema de potência operado com gaseificador de leito fluidizado circulante e motor de ciclo Otto
In this study, the simulated performance of a combined gasifier-engine system operated with fossil and renewable fuels was carried out. A circulating fluidized bed gasifier fed with two kinds of very common lignocellulosic biomass available at Southern Brazil, as well as with coal and municipal soli...
Autor principal: | Fogiatto, Marcelo Adriano |
---|---|
Formato: | Dissertação |
Idioma: | Português |
Publicado em: |
Universidade Tecnológica Federal do Paraná
2017
|
Assuntos: | |
Acesso em linha: |
http://repositorio.utfpr.edu.br/jspui/handle/1/2399 |
Tags: |
Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
|
Resumo: |
In this study, the simulated performance of a combined gasifier-engine system operated with fossil and renewable fuels was carried out. A circulating fluidized bed gasifier fed with two kinds of very common lignocellulosic biomass available at Southern Brazil, as well as with coal and municipal solid waste were chosen to produce the fuel gas. The gasification model was based on the non-stoichiometric method of Gibbs free energy minimization, including modifications regarding semi-empirical correlations found in literature, in order to correct the gas yield calculated for non-converted carbon and methane from pyrolysis. By applying this model with equivalence ratio varying from 0.2 to 0.54, it was possible to obtain the composition of the fuel gas, as well as some of its properties, such as density and heating value. These properties were used to simulate the operation of a 2.0 L, 5-cylinder spark-ignited FIAT engine. For this engine, a zero-dimensional, non-adiabatic, finite heat release model was chosen in order to assess its performance regarding power, torque and specific fuel consumption. From these results, it was possible to evaluate the overall performance of the gasifier-engine power system for each kind of solid fuel used. The validation by comparison of the data obtained from the gasification model, as well as from the engine model, has shown good agreement with those available in previous works. The producer gas yield was always higher than the amount of gas consumed by a single engine, making it possible to obtain maximum brake power of 103.6 kW for rice husk with 6 engines, 207.7 kW for pine sawdust with 9 engines, 194.3 kW for coal with 8 engines, and 343,6 kW for municipal solid waste with 20 engines, always in parallel setup. The consumption and torque curves have shown the expected behaviour, with both best results being obtained for coal. Therefore, the maximum overall performance of the power system was 14.0% for rice husk, 18.6% for pine sawdust, 21.0% for coal, and 28.2% for municipal solid waste, which was in agreement with results from previous studies. |
---|