Uma introdução aos primos gêmeos: caracterizações e ilustrações
The present work considers different properties and characterizations of the twin primes numbers. This dissertation will present proofs of specific propositions and theorems from number theory, as well as examples, that elucidate the study of twin prime numbers. In addition, it will be presented the...
Autor principal: | Coelho, Joao Eugenio Camilo |
---|---|
Formato: | Dissertação |
Idioma: | Português |
Publicado em: |
Universidade Tecnológica Federal do Paraná
2021
|
Assuntos: | |
Acesso em linha: |
http://repositorio.utfpr.edu.br/jspui/handle/1/26532 |
Tags: |
Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
|
id |
riut-1-26532 |
---|---|
recordtype |
dspace |
spelling |
riut-1-265322021-11-30T06:06:11Z Uma introdução aos primos gêmeos: caracterizações e ilustrações An introduction to twin primes: characterizations and illustrations Coelho, Joao Eugenio Camilo Sanchez, Andres David Baez https://orcid.org/ 0000-0002-3456-6761 http://lattes.cnpq.br/9044875487251194 Sanchez, Andres David Baez https://orcid.org/ 0000-0002-3456-6761 http://lattes.cnpq.br/9044875487251194 Adames, Marcio Rostirolla https://orcid.org/0000-0002-8038-7713 http://lattes.cnpq.br/7544873170099727 Carvalho, Rafael Aleixo de https://orcid.org/0000-0002-7865-6929 http://lattes.cnpq.br/7777729152508878 Números primos - Ilustrações Fermat, Teorema de Congruências e restos Python (Linguagem de programação de computador) Numbers, Prime - Pictures Fermat's theorem Congruences and residues Python (Computer program language) CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA Matemática The present work considers different properties and characterizations of the twin primes numbers. This dissertation will present proofs of specific propositions and theorems from number theory, as well as examples, that elucidate the study of twin prime numbers. In addition, it will be presented the relationships between twin prime numbers and binomial numbers, as well as the reltionship with Fermat’s Little Theorem. The characterization of twin prime numbers and the Clement’s Congruence will be used to obtain twin primes and to present numerical illustrations of the series of reciprocals of primes and twin prime reciprocals, using computational resources as MAXIMA and Python. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Universidade Tecnológica Federal do Paraná (UTFPR) O presente trabalho aborda diferentes propriedades e caracterizações dos números primos gêmeos. Nesta dissertação serão apresentadas demonstrações de proposições e teoremas específicos da teoria dos números, além de ilustrações, que elucidam o estudo dos números primos gêmeos. Além disso, será exposta a relação dos primos gêmeos com os números binomiais e com o Pequeno Teorema de Fermat. Serão utilizadas também, a caracterização dos primos gêmeos e a Congruência de Clement, para gerar primos gêmeos e apresentar ilustrações numéricas das séries dos inversos dos primos e dos inversos dos primos gêmeos, usando os recursos computacionais MAXIMA e Python. 2021-11-29T21:33:59Z 2021-11-29T21:33:59Z 2021-10-15 masterThesis COELHO, Joao Eugenio Camilo. Uma introdução aos primos gêmeos: caracterizações e ilustrações. 2021. Dissertação (Programa de Mestrado Profissional em Matemática em Rede Nacional) - Universidade Tecnológica Federal do Paraná, Curitiba, 2021. http://repositorio.utfpr.edu.br/jspui/handle/1/26532 por openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Universidade Tecnológica Federal do Paraná Curitiba Brasil Programa de Mestrado Profissional em Matemática em Rede Nacional UTFPR |
institution |
Universidade Tecnológica Federal do Paraná |
collection |
RIUT |
language |
Português |
topic |
Números primos - Ilustrações Fermat, Teorema de Congruências e restos Python (Linguagem de programação de computador) Numbers, Prime - Pictures Fermat's theorem Congruences and residues Python (Computer program language) CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA Matemática |
spellingShingle |
Números primos - Ilustrações Fermat, Teorema de Congruências e restos Python (Linguagem de programação de computador) Numbers, Prime - Pictures Fermat's theorem Congruences and residues Python (Computer program language) CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA Matemática Coelho, Joao Eugenio Camilo Uma introdução aos primos gêmeos: caracterizações e ilustrações |
description |
The present work considers different properties and characterizations of the twin primes numbers. This dissertation will present proofs of specific propositions and theorems from number theory, as well as examples, that elucidate the study of twin prime numbers. In addition, it will be presented the relationships between twin prime numbers and binomial numbers, as well as the reltionship with Fermat’s Little Theorem. The characterization of twin prime numbers and the Clement’s Congruence will be used to obtain twin primes and to present numerical illustrations of the series of reciprocals of primes and twin prime reciprocals, using computational resources as MAXIMA and Python. |
format |
Dissertação |
author |
Coelho, Joao Eugenio Camilo |
author_sort |
Coelho, Joao Eugenio Camilo |
title |
Uma introdução aos primos gêmeos: caracterizações e ilustrações |
title_short |
Uma introdução aos primos gêmeos: caracterizações e ilustrações |
title_full |
Uma introdução aos primos gêmeos: caracterizações e ilustrações |
title_fullStr |
Uma introdução aos primos gêmeos: caracterizações e ilustrações |
title_full_unstemmed |
Uma introdução aos primos gêmeos: caracterizações e ilustrações |
title_sort |
uma introdução aos primos gêmeos: caracterizações e ilustrações |
publisher |
Universidade Tecnológica Federal do Paraná |
publishDate |
2021 |
citation |
COELHO, Joao Eugenio Camilo. Uma introdução aos primos gêmeos: caracterizações e ilustrações. 2021. Dissertação (Programa de Mestrado Profissional em Matemática em Rede Nacional) - Universidade Tecnológica Federal do Paraná, Curitiba, 2021. |
url |
http://repositorio.utfpr.edu.br/jspui/handle/1/26532 |
_version_ |
1805303637632614400 |
score |
10,814766 |