Análise de histopatologia renal usando deep learning
In this work we use convolutional neural network and deep learning to detect objects of biomedical interest (i.e., glomeruli) in whole digitalized slides from studies of renal pathology. The analysis of glomeruli is important for studies of nephropathies caused by diabetes, lupus, drug use, excess o...
Autor principal: | Barbosa, Lourenço Madruga |
---|---|
Formato: | Dissertação |
Idioma: | Português |
Publicado em: |
Universidade Tecnológica Federal do Paraná
2022
|
Assuntos: | |
Acesso em linha: |
http://repositorio.utfpr.edu.br/jspui/handle/1/27820 |
Tags: |
Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
|
Resumo: |
In this work we use convolutional neural network and deep learning to detect objects of biomedical interest (i.e., glomeruli) in whole digitalized slides from studies of renal pathology. The analysis of glomeruli is important for studies of nephropathies caused by diabetes, lupus, drug use, excess of drugs, among other causes. The digitization of entire slides allows the application of a variety of digital image processing techniques and the use of artificial intelligence to assist doctors in diagnoses. We carried out the of a YOLOv3 convolutional neural network of architecture with 53 layers. The training and performance analysis of the network had 6 experiments. The training data set contained a total of 16 entire slides, divided into sub-images of 2048x2048, which resulted in a total of 815 images, containing a total of 2325 annotated glomeruli, for training, validation and performance evaluation. For the performance analysis of the trained network (i.e., detection), 7 unknown slides of the network were selected. Based on the result found, it is possible to state that the result of this work is superior to those found in the literature. Accuracy, Precision, Sensitivity, Specificity and F1s of 99.40%, 97.31%, 96.17%, 99.73% and 94.24%, respectively, were obtained in this work showing the potential to assist in the diagnosis of histopathological exams. |
---|