Proposição de um modelo baseado em inferência neuro-fuzzy para segmentação de fornecedores sustentáveis

Due to the globalization of supply chains and the consequent increase in the quantity and diversity of suppliers, their segmentation has become fundamental, because it helps purchasing companies in the definition of specific strategies for suppliers that have similar characteristics. Given the need...

ver descrição completa

Autor principal: Saugo, Ricardo Antonio
Formato: Dissertação
Idioma: Português
Publicado em: Universidade Tecnológica Federal do Paraná 2022
Assuntos:
Acesso em linha: http://repositorio.utfpr.edu.br/jspui/handle/1/28496
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
id riut-1-28496
recordtype dspace
spelling riut-1-284962022-05-14T06:08:26Z Proposição de um modelo baseado em inferência neuro-fuzzy para segmentação de fornecedores sustentáveis Proposal of a model based on neuro-fuzzy inference for sustainable suppliers’ segmentation Saugo, Ricardo Antonio Lima Junior, Francisco Rodrigues https://orcid.org/0000-0001-7053-5519 http://lattes.cnpq.br/3024249030533602 Lima Junior, Francisco Rodrigues https://orcid.org/0000-0001-7053-5519 http://lattes.cnpq.br/3024249030533602 Peinado, Jurandir https://orcid.org/0000-0003-4777-6984 http://lattes.cnpq.br/0900135211447359 Carpinetti, Luiz Cesar Ribeiro https://orcid.org/0000-0002-8357-2607 http://lattes.cnpq.br/4436860841275628 Logística empresarial Sustentabilidade Processo decisório Administração de empresas - Métodos estatísticos Gestão da cadeia de abastecimento Análise multivariada Business logistics Sustainability Decision making Industrial management - Statistical methods Supply chain management Multivariate analysis CNPQ::CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO Administração Due to the globalization of supply chains and the consequent increase in the quantity and diversity of suppliers, their segmentation has become fundamental, because it helps purchasing companies in the definition of specific strategies for suppliers that have similar characteristics. Given the need to incorporate the concept of sustainability into supply chain management, economic, environmental and social performance criteria are also considered in the supplier assessment process. However, in the literature there are few works that present models for segmenting sustainable suppliers, and none of the published works uses supervised learning techniques. Therefore, the objective of this study is to propose a decision model for segmenting sustainable suppliers based on neuro-fuzzy inference systems (ANFIS). The proposed approach combines three ANFIS models in a three-dimensional quadratic matrix, based on several criteria associated with the dimensions of the triple bottom line. 108 candidate topologies were implemented with the help of the Neuro-Fuzzy Designer tool of the MATLAB® software. For the training and testing of these topologies, simulated samples from 200 supplier evaluations were used, generated with the help of the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method. The mean square error (MSE) between the desired values and the estimated values by each ANFIS model was calculated in order to select the best topologies and verify the accuracy of the models. The results provided by the topologies with the lowest mean squared error were analyzed using statistical tests. This study can be useful to help researchers and developers of computational solutions, mainly by providing adequate topological parameters to obtain accurate results in the application in question. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Devido à globalização das cadeias de suprimentos e o consequente aumento da quantidade e diversidade dos fornecedores, sua segmentação tornou-se fundamental, pois auxilia as empresas compradoras na definição de estratégias específicas para fornecedores que possuem características semelhantes. Dada a necessidade da incorporação do conceito de sustentabilidade na gestão de cadeias de suprimentos, critérios de desempenho econômico, ambiental e social passam também a serem considerados no processo de avaliação dos fornecedores. Entretanto, na literatura são escassos os trabalhos que apresentam modelos para segmentação de fornecedores sustentáveis, sendo que nenhum dos trabalhos publicados utiliza técnicas de aprendizagem supervisionada. Diante disso, o objetivo deste estudo é propor um modelo de decisão para segmentação de fornecedores sustentáveis baseado em sistemas de inferência neuro-fuzzy (ANFIS). A abordagem proposta combina três modelos ANFIS em uma matriz quadrática tridimensional, baseada em diversos critérios associados às dimensões do triple bottom line. 108 topologias candidatas foram implementadas com o auxílio da ferramenta Neuro-Fuzzy Designer do software MATLAB®. Para o treinamento e teste dessas topologias, foram usadas amostras simuladas de 200 avaliações de fornecedores, geradas com o auxílio do método TOPSIS (Technique for Order Preference by Similarity to Ideal Solution). O erro quadrático médio (MSE) entre os valores desejados e os valores estimados por cada modelo ANFIS foi calculado a fim de selecionar as melhores topologias e verificar a acurácia dos modelos. Os resultados fornecidos pelas topologias com menor erro quadrático médio foram analisados por meio de testes estatísticos. Este estudo pode ser útil para auxiliar pesquisadores e desenvolvedores de soluções computacionais, principalmente por fornecer parâmetros topológicos adequados para obtenção de resultados precisos na aplicação em questão. 2022-05-13T14:24:48Z 2022-05-13T14:24:48Z 2022-03-07 masterThesis SAUGO, Ricardo Antonio. Proposição de um modelo baseado em inferência neuro-fuzzy para segmentação de fornecedores sustentáveis. 2022. Dissertação (Mestrado em Administração) - Universidade Tecnológica Federal do Paraná, Curitiba, 2022. http://repositorio.utfpr.edu.br/jspui/handle/1/28496 por openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Universidade Tecnológica Federal do Paraná Curitiba Brasil Programa de Pós-Graduação em Administração UTFPR
institution Universidade Tecnológica Federal do Paraná
collection RIUT
language Português
topic Logística empresarial
Sustentabilidade
Processo decisório
Administração de empresas - Métodos estatísticos
Gestão da cadeia de abastecimento
Análise multivariada
Business logistics
Sustainability
Decision making
Industrial management - Statistical methods
Supply chain management
Multivariate analysis
CNPQ::CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO
Administração
spellingShingle Logística empresarial
Sustentabilidade
Processo decisório
Administração de empresas - Métodos estatísticos
Gestão da cadeia de abastecimento
Análise multivariada
Business logistics
Sustainability
Decision making
Industrial management - Statistical methods
Supply chain management
Multivariate analysis
CNPQ::CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO
Administração
Saugo, Ricardo Antonio
Proposição de um modelo baseado em inferência neuro-fuzzy para segmentação de fornecedores sustentáveis
description Due to the globalization of supply chains and the consequent increase in the quantity and diversity of suppliers, their segmentation has become fundamental, because it helps purchasing companies in the definition of specific strategies for suppliers that have similar characteristics. Given the need to incorporate the concept of sustainability into supply chain management, economic, environmental and social performance criteria are also considered in the supplier assessment process. However, in the literature there are few works that present models for segmenting sustainable suppliers, and none of the published works uses supervised learning techniques. Therefore, the objective of this study is to propose a decision model for segmenting sustainable suppliers based on neuro-fuzzy inference systems (ANFIS). The proposed approach combines three ANFIS models in a three-dimensional quadratic matrix, based on several criteria associated with the dimensions of the triple bottom line. 108 candidate topologies were implemented with the help of the Neuro-Fuzzy Designer tool of the MATLAB® software. For the training and testing of these topologies, simulated samples from 200 supplier evaluations were used, generated with the help of the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method. The mean square error (MSE) between the desired values and the estimated values by each ANFIS model was calculated in order to select the best topologies and verify the accuracy of the models. The results provided by the topologies with the lowest mean squared error were analyzed using statistical tests. This study can be useful to help researchers and developers of computational solutions, mainly by providing adequate topological parameters to obtain accurate results in the application in question.
format Dissertação
author Saugo, Ricardo Antonio
author_sort Saugo, Ricardo Antonio
title Proposição de um modelo baseado em inferência neuro-fuzzy para segmentação de fornecedores sustentáveis
title_short Proposição de um modelo baseado em inferência neuro-fuzzy para segmentação de fornecedores sustentáveis
title_full Proposição de um modelo baseado em inferência neuro-fuzzy para segmentação de fornecedores sustentáveis
title_fullStr Proposição de um modelo baseado em inferência neuro-fuzzy para segmentação de fornecedores sustentáveis
title_full_unstemmed Proposição de um modelo baseado em inferência neuro-fuzzy para segmentação de fornecedores sustentáveis
title_sort proposição de um modelo baseado em inferência neuro-fuzzy para segmentação de fornecedores sustentáveis
publisher Universidade Tecnológica Federal do Paraná
publishDate 2022
citation SAUGO, Ricardo Antonio. Proposição de um modelo baseado em inferência neuro-fuzzy para segmentação de fornecedores sustentáveis. 2022. Dissertação (Mestrado em Administração) - Universidade Tecnológica Federal do Paraná, Curitiba, 2022.
url http://repositorio.utfpr.edu.br/jspui/handle/1/28496
_version_ 1805311887933440000
score 10,814766