Modelo ontológico para determinação de planejamento de testes considerando o perfil de uso de produtos: um caso aplicado em motores de arranque de tratores agrícolas
The transformations that the industries are currently facing represent a new industrial period also known as Industry 4.0. In this scenario of innovations, concepts related to Smart Manufacturing make a constant search for knowledge capture to improve the efficiency of products and processes. Theref...
Autor principal: | Paganin, Lucas Barboza Zattar |
---|---|
Formato: | Dissertação |
Idioma: | Português |
Publicado em: |
Universidade Tecnológica Federal do Paraná
2017
|
Assuntos: | |
Acesso em linha: |
http://repositorio.utfpr.edu.br/jspui/handle/1/2871 |
Tags: |
Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
|
Resumo: |
The transformations that the industries are currently facing represent a new industrial period also known as Industry 4.0. In this scenario of innovations, concepts related to Smart Manufacturing make a constant search for knowledge capture to improve the efficiency of products and processes. Therefore, changes in product design aiming the improvement of reliability should be undertaken from the early stages of the New Product Development process (NPD) to reduce technical and economical impacts. It is in this context that the Design for Reliability (DfR) approach emerges as the set of activities that aims to ensure the reliability of a product during all stages of its life cycle. Analyzing the most recent research on the subject and some information provided by an agricultural machinery company, it was not observed any case of implementation of DfR in the initial stages of the NPD to determine the test plan taking into consideration the product usage profile. Thence, the main goal of this research was established according to the elaboration of a method, based on an ontological model, which allows the determination of the more appropriate test plan considering the usage characteristics of products. In order to develop this method, the methodological approach Design Science Research (DSR) was adopted. In this way, six stages had to be covered: 1) problem identification and motivation; 2) definition of objectives and solution; 3) design and development; 4) demonstration; 5) evaluation and 6) communication of results. The final solution meets users' needs by being an efficient and easy-to-run method, as well as by enhancing products’ reliability throughout their lifecycle. This work can be applied in the process of creating several products bringing significant advantages to companies. |
---|