A geometria do disco de Poincaré
In this work, we discuss the history of non-Euclidean geometries, emphasizing a model of hyperbolic geometry in the plane: the Poincaré disk. We relate some results in this geometry to results from Euclidean geometry, such as the sum of the internal angles of a triangle, the area of a triangle, the...
Autor principal: | Albon, Alfred James Dias |
---|---|
Formato: | Trabalho de Conclusão de Curso (Graduação) |
Idioma: | Português |
Publicado em: |
Universidade Tecnológica Federal do Paraná
2022
|
Assuntos: | |
Acesso em linha: |
http://repositorio.utfpr.edu.br/jspui/handle/1/29010 |
Tags: |
Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
|
Resumo: |
In this work, we discuss the history of non-Euclidean geometries, emphasizing a model of hyperbolic geometry in the plane: the Poincaré disk. We relate some results in this geometry to results from Euclidean geometry, such as the sum of the internal angles of a triangle, the area of a triangle, the Pythagorean theorem and the laws of sines and cosines. We also use a dynamic geometry software, GeoGebra, to build tessellations on the Poincaré disk. We conclude that GeoGebra is an efficient tool to approach hyperbolic geometries in the plane. |
---|