A geometria do disco de Poincaré

In this work, we discuss the history of non-Euclidean geometries, emphasizing a model of hyperbolic geometry in the plane: the Poincaré disk. We relate some results in this geometry to results from Euclidean geometry, such as the sum of the internal angles of a triangle, the area of a triangle, the...

ver descrição completa

Autor principal: Albon, Alfred James Dias
Formato: Trabalho de Conclusão de Curso (Graduação)
Idioma: Português
Publicado em: Universidade Tecnológica Federal do Paraná 2022
Assuntos:
Acesso em linha: http://repositorio.utfpr.edu.br/jspui/handle/1/29010
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Resumo: In this work, we discuss the history of non-Euclidean geometries, emphasizing a model of hyperbolic geometry in the plane: the Poincaré disk. We relate some results in this geometry to results from Euclidean geometry, such as the sum of the internal angles of a triangle, the area of a triangle, the Pythagorean theorem and the laws of sines and cosines. We also use a dynamic geometry software, GeoGebra, to build tessellations on the Poincaré disk. We conclude that GeoGebra is an efficient tool to approach hyperbolic geometries in the plane.