Adsorção e dessorção do ácido acetilsalicílico em carvão ativado de casca de coco de babaçu in natura e funcionalizado com HNO3

The presence of drugs in surface water, groundwater, soil and effluents has raised concerns regarding the inefficiency of conventional treatments and the environmental risks associated with the inappropriate disposal of these emerging micropollutants. The objective of this work was to evaluate the a...

ver descrição completa

Autor principal: Hoppen, Mariana Irene
Formato: Dissertação
Idioma: Português
Publicado em: Universidade Tecnológica Federal do Paraná 2018
Assuntos:
Acesso em linha: http://repositorio.utfpr.edu.br/jspui/handle/1/3020
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Resumo: The presence of drugs in surface water, groundwater, soil and effluents has raised concerns regarding the inefficiency of conventional treatments and the environmental risks associated with the inappropriate disposal of these emerging micropollutants. The objective of this work was to evaluate the adsorption and desorption of acetylsalicylic acid (AAS) in aqueous solution of in natura activated babassu carbon (CAB) and chemically functionalized with HNO3 (CAA). The ash adsorbents, moisture and volatile matter, granulometry, elemental analysis, morphological aspects of the adsorbents were determined by scanning electron microscopy (SEM), pH at the zero load point (pHPCZ), surface characteristics of the adsorbents. adsorbents by adsorption/desorption of N2 and functional groups by infrared spectroscopy (FTIR) and Boehm method. Kinetic, equilibrium and thermodynamic tests were conducted for batch adsorption and desorption. Preliminary tests were conducted in a fixed bed column. The adsorption and desorption kinetics results were adjusted to the pseudofirst and pseudo-second order models and the adsorption equilibrium results to the Langmuir and Freundlich mathematical models. The values of ΔG º, ΔH º and ΔS º were determined for the thermodynamic adsorption and desorption results. The desorption equilibrium results were fitted to the Langmuir-Freundlich model. The adsorbents presented microporous characteristics, with values of pHPCZ of 6.4 for CAB and 4,5 for CAA that interfere directly in the adsorption. Adsorption was favored at acidic pH in both adsorbents. The adsorption kinetics data were better fitted to the pseudo second order model and those of the adsorption equilibrium to the Langmuir model, indicating the influence of the chemisorption on the adsorption. The results of ΔGº and ΔHº were negative and that of ΔSº positive at temperatures of 25 ºC, 45 ºC and 55 ºC, indicating the influence of the chemisorption in the process that is exothermic and spontaneous. The increase in temperature favored the adsorption with the CAB, and reduced the adsorptive capacity of the CAA. At acid pH the maximum adsorbed amount of ASA was 119.80 mg g -1 for CAB and 115.08 mg g -1 for CAA. In the desorption experiments the best results were observed with the CAB at pHPCZ = 6.4. The kinetic results had better fit to the pseudo first order model. Desorption isotherms fitted to the Langmuir-Freundlich model indicated affinity between the CAB, ASA and the chosen regenerant. Additionally, the average adsorption and desorption percentages of 92% and 75% in CAB and 72% and 10% in CAA, respectively, were obtained with the cycles. The set of pH and temperature data evaluated in the fixed bed column assays determined that the adsorption reaction is best defined at pH 2.0 and temperature of 40 ºC.