Introdução à teoria da medida e integração de Lebesgue

The present course conclusion work is an introductory bibliographic review about Lebesgues’s Measure Theory and Integral and has as objective to complement the knowledge acquired at graduation. We seek to integrate functions that aren’t integrable by Riemann’s Integral, for this we start...

ver descrição completa

Autor principal: Matsue Filho, Sérgio
Formato: Trabalho de Conclusão de Curso (Graduação)
Idioma: Português
Publicado em: Universidade Tecnológica Federal do Paraná 2020
Assuntos:
Acesso em linha: http://repositorio.utfpr.edu.br/jspui/handle/1/7375
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Resumo: The present course conclusion work is an introductory bibliographic review about Lebesgues’s Measure Theory and Integral and has as objective to complement the knowledge acquired at graduation. We seek to integrate functions that aren’t integrable by Riemann’s Integral, for this we started the study of preliminary concepts as Sequences, Isolated point, Accumulation point, Supreme, Lowest, Diameter, Open Set, Closed Set, enumerable, non-enumerable, limited variation function, function’s sequences, punctual convergence, limited uniform function, uniform convergent. So we precede the study of Measure, Lebesgue’s Exterior Measure, Mensurable sets, Lebesgues’s Measure, Mensurable Functions, Egorov and Lusin’s Theorem, Measure Convergence, Lebesgue’s Integral and lastly the Convergence Theorems