Otimização multiobjetivo da extração de antioxidantes do resíduo da casca de pinhão (Araucária angustifólia (Bertol.) Kuntze)
The search for new food preservation methods is an alternative to minimize the abusive use of conservatives, which in many cases present negative health effects. Phenolic compounds mainly natural antioxidants play an important role in human nutrition. Pinhão seed (Araucária angustifólia (Bertol.) Ku...
Autor principal: | Santos, Carlos Henrique Koslinski |
---|---|
Formato: | Dissertação |
Idioma: | Português |
Publicado em: |
Universidade Tecnológica Federal do Paraná
2017
|
Assuntos: | |
Acesso em linha: |
http://repositorio.utfpr.edu.br/jspui/handle/1/2190 |
Tags: |
Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
|
Resumo: |
The search for new food preservation methods is an alternative to minimize the abusive use of conservatives, which in many cases present negative health effects. Phenolic compounds mainly natural antioxidants play an important role in human nutrition. Pinhão seed (Araucária angustifólia (Bertol.) Kuntze) shells is a solid waste which is underestimated while presenting constituents with antioxidant properties. The objective of this work was to study the extraction of such compounds from pinhão shells using the Rotational Central Composite Design (RCCD) with the following variables: shell:solvent proportion (X1), solvent composition (water and ethanol proportion, X2) and extraction temperature (X3). Extraction was carried out with a high energy Ultra-Turrax stirrer and the evaluated responses were DPPH antioxidant activity (Trolox equivalent, TE), total phenolic content (TPC, acid galic equivalent, AGE) and extraction volumetric yield. The later response was considered in order to evaluate the extract retention in the fibrous matrix due to the shell fibers swelling. Results obtained were 354.21 µmolET.g-1 para DPPH (X1 = 8.75gshell.100mL-1, X2 = 38.07 %ethanol e X3 = 42.5°C), 7304.64 mgAGE.100g-1 para TPC (X1 = 5gshell.100mL-1, X2 = 50 %ethanol e X3 = 55°C) e 80% yield (X1 = 2.44gcasca.100mL-1, X2 = 67.5 %ethanol e X3 = 42.5°C). Predictive models to the responses were statistically significant (R2 adj > 0,78) without lack of fit. The significant effects for TPC were X1, X2, X22 e X3, with no significant interaction with each other. For the DPPH model the significant effects were X12, X2, X3 as well as the interaction between X2 and X3. For the extraction yield model the significant effects were X1 e X2 as well as the interaction between X2 and X3. Also, model showed that extraction yield is higher for high ethanol to water proportions, with the opposite effect on the other responses. Optimization was carried out to maximize the evaluated responses using a desirability function to unify all three models and thus using a sequential simplex algorithm to find the optimized condition. Considering the same importance to all variables (individual desirability 1-1-1) it was possible to maximize them using the following conditions: X1 = 2.45gshell.100mL-1, X2 = 44.75 %ethanol e X3 = 63.51°C. For these conditions, the responses were experimentally validated as being 7777.84 mgGAE.100g-1, 378.66 µmolTE.g-1, and 68% extraction yield. Shell fibers swelling was verified by Scanning Electron Microscopy caused by the high energy of the Ultra-Turrax system and increased due to the increase in water and temperature as demonstrated by the RCCD model. Extracts obtaind under the optimized conditions were evaluated by HPLC-UV-VIS/MS to determine their phenolic compounds. + Catequin was the major component found in the extracts at 13.13 m.g-1 for X1 = 12.5 gshell.100mL-1, X2 = 30 %ethanol e X3 = 30°C. The optimization process was successfully performed and applied to other compounds. |
---|