Dinâmica de fluidos computacional aplicada à simulação de reator eletroquímico destinado ao tratamento de efluente têxtil

The textile industry produces great amounts of wastewater as a byproduct of its productive process, which contain high pollutant potential, due to the presence of dyes. These are potentially toxic and high undegradable compounds, from which the Blue Reactive 5G is one of the most used. The treatment...

ver descrição completa

Autor principal: Gasparovic, Claudia Luiza Manfredi
Formato: Dissertação
Idioma: Português
Publicado em: Universidade Tecnológica Federal do Paraná 2018
Assuntos:
Acesso em linha: http://repositorio.utfpr.edu.br/jspui/handle/1/2937
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Resumo: The textile industry produces great amounts of wastewater as a byproduct of its productive process, which contain high pollutant potential, due to the presence of dyes. These are potentially toxic and high undegradable compounds, from which the Blue Reactive 5G is one of the most used. The treatment of such wastewaters is generally accomplished through conventional coagulation and flocculation techniques, which make use of great amounts of aluminum and iron salts. As such, the substitution of these chemical coagulants for alternative technologies such as electrocoagulation may bring great advantages. The process consists in the destabilization of pollutants in aqueous medium by means of the in situ production of coagulant ions by applying electrical current to sacrificial electrodes. Although the process' efficiency is proven, even for the treatment of textile wastewaters, electrocoagulation is still not a consolidated technique, due mainly to the lack of systematic methodologies for the project and scale up of reactors, especially continuous flow ones. Several approaches for modeling and simulation in scientific literature aim to solve this problem, the most promising of which being the Computational Fluid Dynamics (CFD), which may be coupled to several physics, although it is usually coupled only to electrochemistry. The goal of this study was to couple the CFD technique to a kinetic model, experimentally adjusted, for the removal of the Blue Reactive 5G dye from synthetic wastewater through the electrocoagulation technique, aiming to predict the concentration profile in a continuous flow reactor. The reactor is a 8,5 L tank with monopolar connections and four pairs of iron electrodes, which also work as baffles. In order to obtain the kinetic model of the reaction, experiments were carried out in a batch electrocoagulation system with iron electrodes, in which the variables were initial dye concentration (C0) and current density (j) applied to the electrodes. Three kinds of kinetic models were test for the adjust: model based on molar balance, adsorption models and sigmoidal models, from which the logistic sigmoidal model obtained the best adjustment, presenting R² above 90%. Since the model does not include the iron species, preliminary tests were made in the continuous flow reactor, in order to determine the flux influence on the iron distribution through the reactor, as well as the local, in the reactor, were the reaction starts. The flow rates of 0,5 L.min-1 and 2 L.min-1 were tested, and it was noted that, for the low flow rate, there is a reflux of iron, which accumulated before the first electrode, which does not happen for the higher flow rate. For the fluid flow model in the reactor, considerations were made for a incompressible laminar flow and stationary state, and the effect of electrochemical phenomena in the flow and transport of substances, such as gas bubbles and ironic migration, were not considered. The simulation for the continuous flow reactor was performed in the software COMSOL Multiphysics v.5.2®, which makes use of the Finite Elements Method to solve the partial differential equations of continuity and Navier-Stokes. The response variables considered were fluid velocity and dye concentration, and the modules CFD (laminar flow interface) and Transport of Diluted Species (TDS) were used, with weak coupling between the physics. A convergence study was carried out in order to choose the appropriate mesh for the simulation. Three simulations of the concentration profile in the reactor were carried out, with a current density of 8,65 mA.cm-2, respective initial dye concentrations of 45, 25 and 40 mg.L-1 and flow rates of 0,5 L.min-1 for the two first studies and 2 L.min-1 for the third. Experiments were performed with the same conditions as the simulations, samples were collected with mesh of 23 points in the reactor and the results of predicted and observed concentration were compared. The results showed that the proposed model allowed to predict the concentration profile in the reactor with reasonable success, within a low velocity flow range, taking into account the limitations inherent to the model. Therefore, the proposed methodology appears very promising for that, once perfected, the model may assist in the reactor design case to case, as well as aid filling the gap regarding a systematic methodology for reactor project and scale-up, which is the main barrier in expanding the technology.